Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.906
Filtrar
3.
Nature ; 623(7986): 347-355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914934

RESUMO

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Assuntos
Adenosina Trifosfatases , Centrômero , Proteínas de Ligação a DNA , Complexos Multiproteicos , Animais , Feminino , Camundongos/classificação , Camundongos/genética , Adenosina Trifosfatases/metabolismo , Aneuploidia , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hibridização Genética , Infertilidade Feminina/genética , Meiose/genética , Complexos Multiproteicos/metabolismo , Oócitos/metabolismo , Prófase/genética , Núcleo Celular/genética
4.
Nucleic Acids Res ; 51(4): 1652-1661, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36762471

RESUMO

The Mousepost 1.0 online search tool, launched in 2017, allowed to search for variations in all protein-coding gene sequences of 36 sequenced mouse inbred strains, compared to the reference strain C57BL/6J, which could be linked to strain-specific phenotypes and modifier effects. Because recently these genome sequences have been significantly updated and sequences of 16 extra strains added by the Mouse Genomes Project, a profound update, correction and expansion of the Mousepost 1.0 database has been performed and is reported here. Moreover, we have added a new class of protein disturbing sequence polymorphisms (besides stop codon losses, stop codon gains, small insertions and deletions, and missense mutations), namely start codon mutations. The current version, Mousepost 2.0 (https://mousepost.be), therefore is a significantly updated and invaluable tool available to the community and is described here and foreseen by multiple examples.


Assuntos
Genoma , Camundongos , Software , Animais , Camundongos/genética , Códon sem Sentido , Códon de Terminação , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Mutação
5.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36546306

RESUMO

The Western European house mouse (Mus musculus domesticus) is a widespread human commensal that has recently been introduced to North America. Its introduction to the Americas is thought to have resulted from the transatlantic movements of Europeans that began in the early 16th century. To study the details of this colonization history, we examine population structure, explore relevant demographic models, and infer the timing of divergence among house mouse populations in the eastern United States using published exome sequences from five North American populations and two European populations. For North American populations of house mice, levels of nucleotide variation were lower, and low-frequency alleles were less common than for European populations. These patterns provide evidence of a mild bottleneck associated with the movement of house mice into North America. Several analyses revealed that one North American population is genetically admixed, which indicates at least two source populations from Europe were independently introduced to eastern North America. Estimated divergence times between North American and German populations ranged between ∼1,000 and 7,000 years ago and overlapped with the estimated divergence time between populations from Germany and France. Demographic models comparing different North American populations revealed that these populations diverged from each other mostly within the last 500 years, consistent with the timing of the arrival of Western European settlers to North America. Together, these results support a recent introduction of Western European house mice to eastern North America, highlighting the effects of human migration and colonization on the spread of an invasive human commensal.


Assuntos
Variação Genética , Camundongos , Animais , Camundongos/genética , Europa (Continente) , América do Norte , Filogenia , Genética Populacional
6.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36508360

RESUMO

Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.


Assuntos
Evolução Molecular , Variação Genética , Histona-Lisina N-Metiltransferase , Camundongos , Animais , Camundongos/genética , Cromossomos/genética , Genoma , Histona-Lisina N-Metiltransferase/genética
7.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727138

RESUMO

Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.


Assuntos
Proteínas do Olho , Visão Ocular , Animais , Cegueira/genética , Cegueira/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Genoma , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos/genética , Camundongos/metabolismo , Retina/metabolismo , Transtornos da Visão/genética , Transtornos da Visão/metabolismo , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380658

RESUMO

The Alliance of Genome Resources (the Alliance) is a combined effort of 7 knowledgebase projects: Saccharomyces Genome Database, WormBase, FlyBase, Mouse Genome Database, the Zebrafish Information Network, Rat Genome Database, and the Gene Ontology Resource. The Alliance seeks to provide several benefits: better service to the various communities served by these projects; a harmonized view of data for all biomedical researchers, bioinformaticians, clinicians, and students; and a more sustainable infrastructure. The Alliance has harmonized cross-organism data to provide useful comparative views of gene function, gene expression, and human disease relevance. The basis of the comparative views is shared calls of orthology relationships and the use of common ontologies. The key types of data are alleles and variants, gene function based on gene ontology annotations, phenotypes, association to human disease, gene expression, protein-protein and genetic interactions, and participation in pathways. The information is presented on uniform gene pages that allow facile summarization of information about each gene in each of the 7 organisms covered (budding yeast, roundworm Caenorhabditis elegans, fruit fly, house mouse, zebrafish, brown rat, and human). The harmonized knowledge is freely available on the alliancegenome.org portal, as downloadable files, and by APIs. We expect other existing and emerging knowledge bases to join in the effort to provide the union of useful data and features that each knowledge base currently provides.


Assuntos
Bases de Dados Genéticas , Alelos , Animais , Caenorhabditis elegans/genética , Bases de Dados Genéticas/normas , Drosophila/genética , Ontologia Genética , Humanos , Internet , Camundongos/genética , Anotação de Sequência Molecular , Ratos/genética , Saccharomycetales/genética , Peixe-Zebra/genética
9.
Genes Genet Syst ; 96(6): 271-284, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35283410

RESUMO

While the house mouse (Mus musculus), widely distributed in Eurasia, is known to have substantial coat color variation between and within local populations, in both primary and secondary distribution areas, including the Japanese archipelago, the evolutionary history of the color variation is poorly understood. To address the ventral fur color variation, we quantified the lightness of museum skin specimens, and found that the southern subspecies, M. m. castaneus (CAS), has high and low lightness in dry and rainy geographic regions, respectively. The northern subspecies, M. m. musculus (MUS), has low and high levels of lightness in the high and middle latitudes of northern Eurasia, respectively. We examined sequence variation of the agouti signaling protein gene (Asip), which is known to be responsible for the ventral fur color. We performed phylogenetic analyses with 196 haplotype sequences of Asip (~180 kb) generated by phasing the whole-genome data of 98 wild mice reported previously. Network and phylogenetic tree construction revealed clustering of haplotypes representing the two subspecies, MUS and CAS. A number of subclusters with geographic affinities appeared within the subspecies clusters, in which the essential results were consistent with those reconstructed with whole mitochondrial genome data, indicating that the phased haplotype genome sequences of the nuclear genome can be a useful tool for tracing the dispersal of geographical lineages. The results of phylogeographic analysis showed that CAS mice with darker ventral fur possessed similar Asip haplotypes across the geographic distribution, suggesting that these haplotypes are major causes of the historical introduction of Asip haplotypes for darker ventral fur in mice from northern India to the peripheral areas, including the Japanese archipelago. Similarly, MUS in East Asia, which has a white abdomen, formed an Asip haplogroup with that from northern Iran, also with a white abdomen.


Assuntos
Proteína Agouti Sinalizadora , Genoma Mitocondrial , Cor de Cabelo , Camundongos , Proteína Agouti Sinalizadora/genética , Pelo Animal , Animais , Cor de Cabelo/genética , Haplótipos , Camundongos/genética , Filogenia , Filogeografia
10.
Clin Transl Med ; 12(1): e689, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092700

RESUMO

BACKGROUND: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. METHODS: In this study, we compared the single-cell transcriptomes of immune cells from 12 species. Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. RESULTS: Our data revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. CONCLUSIONS: This study is the first to provide a comprehensive analysis of the cross-species single-cell transcriptome atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.


Assuntos
Heterogeneidade Genética , Leucócitos Mononucleares/citologia , Análise de Célula Única/estatística & dados numéricos , Animais , Gatos , Columbidae/genética , Cervos/genética , Cabras/genética , Haplorrinos/genética , Humanos , Mesocricetus/genética , Camundongos/genética , Coelhos , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Especificidade da Espécie , Tigres/genética , Lobos/genética , Peixe-Zebra/genética
11.
Commun Biol ; 5(1): 64, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039652

RESUMO

Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.


Assuntos
Condrócitos/metabolismo , Receptor gp130 de Citocina/genética , Lâmina de Crescimento/metabolismo , Camundongos/genética , Fator de Transcrição STAT3/genética , Animais , Proliferação de Células/genética , Receptor gp130 de Citocina/metabolismo , Homeostase/genética , Camundongos/crescimento & desenvolvimento , Fator de Transcrição STAT3/metabolismo
12.
Mamm Genome ; 33(1): 123-134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698892

RESUMO

The generation of a comprehensive catalog of null alleles covering all protein-coding genes is the goal of the International Mouse Phenotyping Consortium. Over the past 20 years, significant progress has been made towards achieving this goal through the combined efforts of many large-scale programs that built an embryonic stem cell resource to generate knockout mice and more recently employed CRISPR/Cas9-based mutagenesis to delete critical regions predicted to result in frameshift mutations, thus, ablating gene function. The IMPC initiative builds on prior and ongoing work by individual research groups creating gene knockouts in the mouse. Here, we analyze the collective efforts focusing on the combined null allele resource resulting from strains developed by the research community and large-scale production programs. Based upon this pooled analysis, we examine the remaining fraction of protein-coding genes focusing on clearly defined mouse-human orthologs as the highest priority for completing the mutant mouse null resource. In summary, we find that there are less than 3400 mouse-human orthologs remaining in the genome without a targeted null allele that can be further prioritized to achieve our overall goal of the complete functional annotation of the protein-coding portion of a mammalian genome.


Assuntos
Genoma , Camundongos , Animais , Técnicas de Inativação de Genes , Camundongos/genética , Camundongos Knockout , Mutagênese , Fenótipo
13.
Mol Biol Rep ; 49(2): 1369-1377, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846649

RESUMO

BACKGROUND: Streptozotocin is a classic drug used to induce diabetes in animal models. OBJECTIVE: The aim of this study is to investigate the liver transcriptome of Kunming mice with diabetes induced by either streptozotocin (STZ) or Non-STZ. METHODS: Forty male mice were randomly assigned into four groups: Control (Ctr, standard diet), mHH (high fat and high carbohydrate diet), mHS (high fat and high carbohydrate diet for 4 weeks followed by 60 mg/kg STZ for 3 consecutive days) and mSH (60 mg/kg STZ for 3 consecutive days followed by a high fat and high carbohydrate diet for 12 weeks). All mice injected with STZ were identified as diabetic despite the sequential feeding of high fat and high carbohydrate diets. RESULTS: Only 7 of 13 mice in the mHH group met the diagnostic criteria for diabetes. The asting blood glucose (FBG) of the mHH, mHS, mSH and Ctrl groups was 13.27 ± 1.14, 15.01 ± 2.59, 15.95 ± 4.38 and 6.28 ± 0.33 mmol/L at the 12th week, respectively. Compared with the mHH group, transcription was elevated in 85 genes in the livers of mHS mice, while 21 genes were downregulated and 97 genes were upregulated in the mSH group while 35 genes were decreased. A total of 43 co-expressed genes were identified in the mHS vs mHH and mSH vs mHH groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses showed that two corporate GO terms and two KEGG pathways were significantly annotated in the STZ-treated groups. Both the GO term and pathway were related to the metabolism mediated by p53. CONCLUSION: A high fat and high carbohydrate diet combined with a low dose of STZ can effectively induce diabetes in Kunming mice despite the abnormal expressions of genes in the liver. The differentially expressed genes were related to metabolism mediated by p53.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Animais , Animais não Endogâmicos/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Insulina/metabolismo , Fígado/patologia , Masculino , Camundongos/genética , Especificidade de Órgãos/genética , Estreptozocina/farmacologia , Transcriptoma/genética
14.
Mamm Genome ; 33(1): 181-191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34532769

RESUMO

The RIKEN BioResource Research Center (BRC) was established in 2001 as a comprehensive biological resource center in Japan. The Experimental Animal Division, one of the BRC infrastructure divisions, has been designated as the core facility for mouse resources within the National BioResource Project (NBRP) by the Japanese government since FY2002. Our activities regarding the collection, preservation, quality control, and distribution of mouse resources have been supported by the research community, including evaluations and guidance on advancing social and research needs, as well as the operations and future direction of the BRC. Expenditure for collection, preservation, and quality-control operations of the BRC, as a national core facility, has been funded by the government, while distribution has been separately funded by users' reimbursement fees. We have collected over 9000 strains created mainly by Japanese scientists including Nobel laureates and researchers in cutting-edge fields and distributed mice to 7000 scientists with 1500 organizations in Japan and globally. Our users have published 1000 outstanding papers and a few dozen patents. The collected mouse resources are accessible via the RIKEN BRC website, with a revised version of the searchable online catalog. In addition, to enhance the visibility of useful strains, we have launched web corners designated as the "Mouse of the Month" and "Today's Tool and Model." Only high-demand strains are maintained in live colonies, while other strains are cryopreserved as embryos or sperm to achieve cost-effective management. Since 2007, the RIKEN BRC has built up a back-up facility in the RIKEN Harima branch to protect the deposited strains from disasters. Our mice have been distributed with high quality through the application of strict microbial and genetic quality control programs that cover a globally accepted pathogens list and mutated alleles generated by various methods. Added value features, such as information about users' publications, standardized phenotyping data, and genome sequences of the collected strains, are important to facilitate the use of our resources. We have added and disseminated such information in collaboration with the NBRP Information Center and the NBRP Genome Information Upgrading Program. The RIKEN BRC has participated in international mouse resource networks such as the International Mouse Strain Resource, International Mouse Phenotyping Consortium, and Asian Mouse Mutagenesis and Resource Association to facilitate the worldwide use of high-quality mouse resources, and as a consequence it contributes to reproducible life science studies and innovation around the globe.


Assuntos
Programas Governamentais , Centros de Informação , Camundongos , Animais , Genoma , Japão , Camundongos/genética
15.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34313795

RESUMO

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Assuntos
Pesquisa Biomédica , Modelos Animais de Doenças , Camundongos , National Institutes of Health (U.S.) , Animais , Humanos , Camundongos/genética , Reprodutibilidade dos Testes , Estados Unidos
16.
Commun Biol ; 4(1): 1354, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857879

RESUMO

Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear. Here, we investigate the impact of NEIL2 and its potential overlap with NEIL1 on behavior in knockout mouse models. Neil1-/-Neil2-/- mice display hyperactivity, reduced anxiety and improved learning. Hippocampal oxidative DNA base lesion levels are comparable between genotypes and no mutator phenotype is found. Thus, impaired canonical repair is not likely to explain the altered behavior. Electrophysiology suggests reduced axonal activation in the hippocampal CA1 region in Neil1-/-Neil2-/- mice and lack of NEIL1 and NEIL2 causes dysregulation of genes in CA1 relevant for synaptic function. We postulate a cooperative function of NEIL1 and NEIL2 in genome regulation, beyond canonical BER, modulating behavior in mice.


Assuntos
Ansiedade/genética , DNA Glicosilases/genética , Aprendizagem , Camundongos/psicologia , Animais , DNA Glicosilases/metabolismo , Regulação da Expressão Gênica , Hipocampo/fisiologia , Masculino , Camundongos/genética , Camundongos Knockout , Estresse Oxidativo/fisiologia
17.
Commun Biol ; 4(1): 1306, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795407

RESUMO

Age is associated with progressively impaired, metabolic, cardiac and vascular function, as well as reduced work/exercise capacity, mobility, and hence quality of life. Exercise exhibit positive effects on age-related dysfunctions and diseases. However, for a variety of reasons many aged individuals are unable to engage in regular physical activity, making the development of pharmacological treatments that mimics the beneficial effects of exercise highly desirable. Here we show that the pan-AMPK activator O304, which is well tolerated in humans, prevented and reverted age-associated hyperinsulinemia and insulin resistance, and improved cardiac function and exercise capacity in aged mice. These results provide preclinical evidence that O304 mimics the beneficial effects of exercise. Thus, as an exercise mimetic in clinical development, AMPK activator O304 holds great potential to mitigate metabolic dysfunction, and to improve cardiac function and exercise capacity, and hence quality of life in aged individuals.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Tolerância ao Exercício/genética , Coração/fisiologia , Resistência à Insulina/genética , Camundongos/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos/genética , Camundongos/metabolismo , Condicionamento Físico Animal
18.
Genes (Basel) ; 12(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828303

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability. The Dp10(1)Yey (Dp10) is a mouse model of DS that is trisomic for orthologs of 25% of the Hsa21 protein-coding genes, the entirety of the Hsa21 syntenic region on mouse chromosome 10. Trisomic genes include several involved in brain development and function, two that modify and regulate the activities of sex hormones, and two that produce sex-specific phenotypes as null mutants. These last four are the only Hsa21 genes with known sexually dimorphic properties. Relatively little is known about the potential contributions to the DS phenotype of segmental trisomy of Mmu10 orthologs. Here, we have tested separate cohorts of female and male Dp10 mice, at 3 and 9 months of age, in an open field elevated zero maze, rotarod, and balance beam, plus the learning and memory tasks, spontaneous alternation, puzzle box, double-H maze, context fear conditioning, and acoustic startle/prepulse inhibition, that depend upon the function of the prefrontal cortex, striatum, hippocampus, and cerebellum. We show that there are age and sex-specific differences in strengths and weaknesses, suggesting that genes within the telomere proximal region of Hsa21 influence the DS phenotype.


Assuntos
Cromossomos de Mamíferos/genética , Síndrome de Down , Aprendizagem/fisiologia , Camundongos/genética , Fatores Etários , Animais , Comportamento Animal , Mapeamento Cromossômico , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Fenótipo , Caracteres Sexuais
19.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769078

RESUMO

Selenophosphate synthetase 1 (SEPHS1) plays an essential role in cell growth and survival. However, the underlying molecular mechanisms remain unclear. In the present study, the pathways regulated by SEPHS1 during gastrulation were determined by bioinformatical analyses and experimental verification using systemic knockout mice targeting Sephs1. We found that the coagulation system and retinoic acid signaling were most highly affected by SEPHS1 deficiency throughout gastrulation. Gene expression patterns of altered embryo morphogenesis and inhibition of Wnt signaling were predicted with high probability at E6.5. These predictions were verified by structural abnormalities in the dermal layer of Sephs1-/- embryos. At E7.5, organogenesis and activation of prolactin signaling were predicted to be affected by Sephs1 knockout. Delay of head fold formation was observed in the Sephs1-/- embryos. At E8.5, gene expression associated with organ development and insulin-like growth hormone signaling that regulates organ growth during development was altered. Consistent with these observations, various morphological abnormalities of organs and axial rotation failure were observed. We also found that the gene sets related to redox homeostasis and apoptosis were gradually enriched in a time-dependent manner until E8.5. However, DNA damage and apoptosis markers were detected only when the Sephs1-/- embryos aged to E9.5. Our results suggest that SEPHS1 deficiency causes a gradual increase of oxidative stress which changes signaling pathways during gastrulation, and afterwards leads to apoptosis.


Assuntos
Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Fosfotransferases/genética , Animais , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Deleção de Genes , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/metabolismo , Gravidez , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 580: 87-92, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34627001

RESUMO

The application of optogenetics in animals has provided new insights into both fundamental neuroscience and diseases of the nervous system. This is primarily due to the fact that optogenetics allows selectively activating or inhibiting particular types of neurons. One of the first transgenic mouse lines developed for the optogenetic experiment was Thy1-ChR2-YFP. Thy1 is an immunoglobulin superfamily member expressing in projection neurons, so it was assumed that channelrhodopsin-2 (ChR2) would be primarily expressed in projection neurons. However, the specificity of ChR2 expression under promoter Thy1 in different lines has to be clarified yet. Therefore, we aimed to determine the cell specificity of ChR2 expression in the entorhinal cortex of Thy1-ChR2-YFP line 18 mice. We have found that both pyramidal cells and fast-spiking interneurons in deep layers of the entorhinal cortex depolarized and fired in response to 470-nm photostimulation. To exclude the effect of synaptic activation of interneurons by pyramidal cells, we used a selective antagonist of AMPA receptors. Under these conditions, inhibitory postsynaptic currents decreased but did not disappear completely. Furthermore, gabazine inhibited these postsynaptic currents entirely, thus confirming the direct activation of interneurons by light. These data demonstrate that ChR2 is expressed in both pyramidal neurons and fast-spiking interneurons of the entorhinal cortex in Thy1-ChR2-YFP mice.


Assuntos
Córtex Entorrinal/fisiologia , Interneurônios/fisiologia , Camundongos/fisiologia , Células Piramidais/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Córtex Entorrinal/efeitos da radiação , Interneurônios/efeitos da radiação , Luz , Proteínas Luminescentes/genética , Camundongos/genética , Camundongos Transgênicos , Optogenética , Células Piramidais/efeitos da radiação , Antígenos Thy-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...